Maximizing the external radiative efficiency of hybrid perovskite solar cells

Abstract

Despite rapid advancements in power conversion efficiency in the last decade, perovskite solar cells still perform below their thermodynamic efficiency limits. Non-radiative recombination, in particular, has limited the external radiative efficiency and open circuit voltage in the highest performing devices. We review the historical progress in enhancing perovskite external radiative efficiency and determine key strategies for reaching high optoelectronic quality. Specifically, we focus on non-radiative recombination within the perovskite layer and highlight novel approaches to reduce energy losses at interfaces and through parasitic absorption. By strategically targeting defects, it is likely that the next set of record-performing devices with ultra-low voltage losses will be achieved.

Publication
PURE AND APPLIED CHEMISTRY
David Ginger
David Ginger
B. Seymour Rabinovitch Endowed Chair in Chemistry

David Ginger is the the B. Seymour Rabinovitch Endowed Chair in Chemistry at the University of Washington, and the PI of the ginger group