Project Details

The ability to convert low-molecular-weight alkanes to high-molecular-weight alkanes yields additional sources of transportation fuel such as diesel. Lighter n-alkanes can be obtained via Fischer-Tropsch chemistry from syngas, possibly originating from the current surplus of natural gas in the US, from direct biomass reduction, or even from CO² reduced with the use of sustainable energy sources. Moreover, light alkanes are found in vast amounts in natural gas and petroleum reserves, equivalent to >10% of current world oil reserves.

In 2006 we reported a system for alkane metathesis based on tandem transfer-hydrogenation and olefin metathesis.¹ Since then we have made progress on and continue to move toward a commercially viable alkane metathesis system by improving catalyst selectivity, stability, and rates, as well as demonstrating robust heterogeneous systems. The key component reactions, alkane dehydrogenation and olefin metathesis, are also of great value for many other chemical transformations.

Reference¹ : Alan S. Goldman; Amy H. Roy; Zheng Huang; Ritu Ahuja; William Schinski; Maurice Brookhart, "Catalytic Alkane Metathesis by Tandem Alkane-Dehydrogenation-Olefin-Metathesis", Science, 2006, 312, 257 (DOI: 10.1126/science.1123787)

Alkane Metathesis Process

Recent Publications and Patents

  • Hanson, S. K.; Baker, R. T. "Knocking on Wood: Base Metal Complexes as Catalysts for Selective Oxidation of Lignin Models and Extracts", Acc. Chem. Res.2015, 48, 2037-2048. 
    (DOI: 10.1021/acs.accounts.5b00104)
  • Dobereiner, G. E.; Erdogan, G.; Larsen, C. R.; Grotjahn, D. B.; Schrock, R. R. "A One-Pot Tandem Olefin Isomerization/Metathesis-Coupling (ISOMET) Reaction", ACS Catal., 2014, 4, 3069-3076.
    (DOI: 10.1021/cs500889x)
  • Cheng, C.; Kim, B. G.; Guironnet, D.; Brookhart, M.; Guan, C.; Wang, D. Y.; Krogh-Jespersen, K.; Goldman, A. S. "Synthesis and Characterization of Carbazolide-based Iridium PNP Pincer Complexes. Mechanistic and Computational Investigation of Alkene Hydrogenation: Evidence for an Ir(III)/Ir(V)/Ir(III) Catalytic Cycle", J. Am. Chem. Soc., 2014, 136, 6672-6683.
    (DO: 10.1021/ja501572g)
  • Dobereiner, G. E.; Yuan, J.; Schrock, R. R.; Goldman, A. S.; Hackenberg, J. D. "Catalytic Synthesis of n-Alkyl Arenes through Alkyl Group Cross Metathesis", J. Am. Chem. Soc., 2013, 135, 12572-12575.
    (DOI: 10.1021/ja4066392)
  • Nawara-Hultzsch, A. J.; Hackenberg, J. D.; Punji, B.; Supplee, C.; Emge, T. J.; Bailey, B. C.; Schrock, R. R.; Brookhart, M.; Goldman, A. S. "Rational Design of Highly Active "Hybrid" Phosphine–Phosphinite Pincer Iridium Catalysts for Alkane Metathesis", ACS Catal., 2013, 3, 2505-2514.
    (DOI: 10.1021/cs400624c)
  • Haibach, M. C.; Wang, D. Y.; Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. S. "(POP)Rh Pincer Hydride Complexes: Unusual Reactivity and Selectivity in Oxidative Addition and Olefin Insertion Reactions", Chem. Sci., 2013, 4, 3683-3692.
    (DOI: 10.1039/C3CS50380A)
  • Haibach, M. C.; Kundu, S.; Brookhart, M.; Goldman, A. S. "Alkane Metathesis by Tandem Alkane-Dehydrogenation-Olefin-Metathesis Catalysis and Related Chemistry", Acc. Chem. Res., 2012, 45, 947.
    (DOI: 10.1021/ar3000713)
  • Schrock, R. D.; Yuan, J.; Axtell, J. "Metathesis Catalysts and Methods Thereof", U.S. Pat. Appl. Publ., 2014, US 20140378637 A1 20141225. 
    http://pdfaiw.uspto.gov/.aiw?PageNum=0&docid=20140378637
  • Kumar, A.; Moronov, O.; Saxton, R.; Goldman, A. “Alkane Dehydrogenation Process” Rutgers The State University of New Jersey, USA; Chevron U.S.A. Inc., U.S. Pat. Appl. Publ. (2015) US 20150251171 A1 2015-14638997, Filed March 4, 2015."
  • Brookhart, M.; Goldman, A.; Carson, E.; Huang, Z.; Kundu, S. K. “Supported Iridium Catalysts”, U.S. Patent 8,362,312, issued January 29, 2013.
  • Goldman, A. S.; Brookhart, M.; MacArthur, A. R.; Ahuja, R.; Huang, Z. “A dual catalyst system for alkane metathesis”, U.S. Patent 7,902,417, issued March 8, 2011.

  • BACK to RESEARCH THEMES