Research Labs


David Beier Lab

The Beier lab studies organ development and repair using genetic and genomic analysis of model systems and human birth defect syndromes.


James Bennett Lab

The Bennett lab investigates the contribution of post-zygotic mutations on human development and birth defects, with a focus on vascular malformations. We also study the impact of rapid diagnostic genomic sequencing in management of children in intensive care units.


Timothy Cherry Lab

The Cherry Lab investigates how the visual system develops, and how genetic variations contribute to blindness and other visual disorders. Our ultimate goal is to develop new therapeutic strategies to treat these disorders.


Michael Cunningham Lab

The Cunningham lab studies the fundamental mechanisms behind craniosynostosis and other malformations to improve care for patients with craniofacial conditions.


Barry Gumbiner Lab

The Gumbiner Lab studies how tissues and organs are built from collections of individual cells. This leads to discoveries about how animals and humans develop, and how their tissues are maintained, repaired and regenerated throughout life. Understanding how these biological processes malfunction provides insights into the causes of birth defects and many diseases, and approaches for potential new treatments.


Daniela Luquetti Lab

The Luquetti lab studies the genetics and epidemiology of craniofacial malformations to identify their causes and develop research methods that can be used to study a wide variety of birth defects.


Murat Maga Lab

The Maga lab investigates the contributions of genetic and environmental factors responsible for human malformations, specifically craniofacial disorders and normal phenotypic variation. The lab is currently unraveling the epigenetic changes – alternations in the genome due to environmental factors as opposed to mutations – that contribute to fetal alcohol spectrum disorders.


Mark Majesky Lab

The Majesky lab uses molecular, biological and developmental genetic approaches to address fundamental questions in the development and differentiation of blood vessels. The goal is to understand the molecular mechanisms involved in the embryonic development of the heart and vascular system to discover and develop applications for stem and progenitor cell-based therapies.


Lisa Maves Lab

The Maves lab investigates how heart and muscle cells develop in the hope of uncovering new treatments for muscular dystrophy and heart disorders.


Vishal Nigam Lab

Information coming soon!


Daryl Okamura Lab

The Okamura lab is currently investigating the role of macrophages in mediating both inflammatory and oxidative pathways and their role in cellular crosstalk with interstitial fibroblasts during chronic kidney injury.


Andy Shih Lab

The Shih Lab uses advanced optical imaging to study neurovascular function in the living brain. The goal is to better understand how blood flows through the brain by watching and learning from model organisms.


Kai Yu Lab

Dr. Yu’s primary research interests focus on molecular, cellular and morphogenetic mechanisms of normal secondary palate morphogenesis and the pathogenesis of cleft palate. He is also investigating molecular and cellular mechanisms of midfacial hypoplasia caused by mutations in FGFRs.