Drew Gorman-Lewis

POSITION
Associate Professor, Earth & Space Sciences

ASTROBIOLOGY RESEARCH AREAS
Life in Extreme Environments

BOX NUMBER
351310

EMAIL
dgormanl@uw.edu

WEBPAGE
http://faculty.washington.edu/dgormanl/wordpress/

CV
http://faculty.washington.edu/dgormanl/wordpress/sample-page/

My research interests focus on understanding the chemistry of water-rock-microbe interactions. Considering these interactions from the perspective of the environment motivates investigations of natural and anthropogenic processes that influence biogeochemical cycles, mineral dissolution, and the movement of chemical species in the environment. Considering these interactions from the perspective of microbial life motivates investigations into the energetics and adaptations that allow microbial life to flourish in extremely harsh chemical and physical environments. Understanding water-rock-microbe interactions on Earth will inform our search for life on other planets. I combine interdisciplinary techniques from microbiology, low temperature aqueous geochemistry, physical chemistry, and thermodynamic modeling to develop a quantitative understanding of the chemistry occurring at the hydrated interface of life and rocks.

Selected Publications

Alam, M. S., Gorman-Lewis, D., Chen, N., Safari, S., Baek, K., Konhauser, K. O., & Alessi, D. S. (2018). Mechanisms of the Removal of U(VI) from Aqueous Solution Using Biochar: A Combined Spectroscopic and Modeling Approach. Environmental Science & Technology, 13057–13067. https://doi.org/10.1021/acs.est.8b01715

Alam, M. S., Gorman-Lewis, D., Chen, N., Flynn, S. L., Ok, Y. S., Konhauser, K. O., & Alessi, D. S. (2018). Thermodynamic Analysis of Nickel(II) and Zinc(II) Adsorption to Biochar. Environmental Science & Technology, 6246–6255. https://doi.org/10.1021/acs.est.7b06261

Gorman-Lewis, D., Martens-Habbena, W., & Stahl, D. A. (2014). Thermodynamic characterization of proton-ionizable functional groups on the cell surfaces of ammonia-oxidizing bacteria and archaea. Geobiology, 157–171. https://doi.org/10.1111/gbi.12075

Gorman-Lewis, D. (2014). Enthalpies and Entropies of Cd and Zn Adsorption ontoBacillus licheniformisand Enthalpies and Entropies of Zn Adsorption ontoBacillus subtilisfrom Isothermal Titration Calorimetry and Surface Complexation Modeling. Geomicrobiology Journal, 383–395. https://doi.org/10.1080/01490451.2013.835887

Harrold, Z. R., & Gorman-Lewis, D. (2013). Thermodynamic analysis of Bacillus subtilis endospore protonation using isothermal titration calorimetry. Geochimica et Cosmochimica Acta, 296–305. https://doi.org/10.1016/j.gca.2013.01.002

Gorman-Lewis, D., Jensen, M. P., Harrold, Z. R., & Hertel, M. R. (2013). Complexation of neptunium(V) with Bacillus subtilis endospore surfaces and their exudates. Chemical Geology, 75–83. https://doi.org/10.1016/j.chemgeo.2013.01.004

Gorman-Lewis, D. (2011). Enthalpies of proton adsorption onto Bacillus licheniformis at 25, 37, 50, and 75°C. Geochimica et Cosmochimica Acta, 1297–1307. https://doi.org/10.1016/j.gca.2010.12.009

Gorman-Lewis, D., Shvareva, T., Kubatko, K.-A., Burns, P. C., Wellman, D. M., McNamara, B., … Fein, J. B. (2009). Thermodynamic Properties of Autunite, Uranyl Hydrogen Phosphate, and Uranyl Orthophosphate from Solubility and Calorimetric Measurements. Environmental Science & Technology, 7416–7422. https://doi.org/10.1021/es9012933

Gorman-Lewis, D., Elias, P. E., & Fein, J. B. (2005). Adsorption of Aqueous Uranyl Complexes ontoBacillus subtilisCells. Environmental Science & Technology, 4906–4912. https://doi.org/10.1021/es047957c