Multi-disciplinary approach to understanding Botulinum toxin

RonetalFigResearch Associate Professor Werner Kaminsky contributed to a research project recently highlighted in Nature. With the catch phrase “BOTOX paralyses zebrafish muscles and blocks fin regeneration”, Nature highlighted a publication on the effect of Botulinum toxin on bone regeneration,[i] tested on small fish, whose fins were cut-off (under sedation), then regrown while testing different amounts of medications administrated to the fish’s dorsolateral trunk and the base of the tail fin prior to surgery.[ii] Nature summed up the findings with “muscle paralysis (was) similar to that seen in mammals and humans in that it was focal, dose-dependent and short-lasting.” and “BTx treatment had a negative impact on bone formation during fin regeneration.” The work involved a truly diverse multi-discipline co-operation between members of three departments on the UW campus: Orthopaedics and Sports Medicine, Pharmacology, and Chemistry. The regenerating zebrafish tail fin often provides a compelling model for therapeutic studies. However, a major hurdle to such efforts is the lack of quantitative modalities for bone mineralization analysis. Kaminsky contributed his patented microscopy technology to determine bone mineralization with a custom built automated polarized light microscope to sequentially acquire images under a stepwise rotating polarizer. This enabled birefringence to be decoupled from transmittance and orientation, allowing for quantitative analysis.

 

[i]http://onlinelibrary.wiley.com/doi/10.1002/jbmr.2274/abstract;jsessionid=DF9492DBD18E5943C72A2F63D73A2816.f03t04

[ii]http://www.nature.com/bonekey/knowledgeenvironment/2014/140806/bonekey201463/full/bonekey201463.html

Open tenure-track faculty positions in Chemistry

Applications are invited for full-time, tenure-track appointments in the Department of Chemistry. Outstanding candidates in all areas of chemistry and interdisciplinary areas involving chemistry will be considered for appointment at the Assistant, Associate, and Full Professor levels. We especially welcome applications in the areas of analytical, inorganic, and organic chemistry.

University of Washington faculty members engage in teaching, research, and service. Successful candidates will be expected to participate in undergraduate and graduate teaching and to develop innovative, vigorous, externally-funded research programs. Applicants must have a Ph.D. or domestic or foreign equivalent degree by date of appointment.

For information about the Department and to apply, please visit https://academicjobsonline.org/ajo/jobs/4322; applications should include a cover letter, curriculum vitae, statement of future research interests, and (at the Assistant Professor rank) three letters of reference. Priority will be given to applications received by October 3, 2014. Please direct all inquiries or disability accommodation requests to search@chem.washington.edu.

The University of Washington is an affirmative action and equal opportunity employer. All qualified applicants will receive consideration for employment without regard to, among other things, race, religion, color, national origin, sex, age, status as protected veterans, or status as qualified individuals with disabilities.