Exploring the origins of life

Keller cover image_squareSarah Keller, working with Roy Black, affiliate professor of bioengineering, has helped to unravel some of the mystery surrounding the origin of cells in Earth’s ancient oceans. The work, recently published in the Proceedings of the National Academy of Sciences, describes the unexpected interaction of the chemical components of RNA and fatty acids and their role in stabilizing the precursors to cellular membranes.

The chemical components crucial to the start of life on Earth may have primed and protected each other in never-before-realized ways. That could mean a simpler scenario for how that first spark of life on the planet came about. Scientists have long thought that life started when the right combination of bases and sugars produced self-replicating ribonucleic acid, or RNA, inside a rudimentary ‘cell’ composed of fatty acids. Under the right conditions, fatty acids naturally form into bag-like structures similar to today’s cell membranes. In testing one of the fatty acids representative of those found before life began – decanoic acid – Keller and Black discovered that the four bases in RNA bound more readily to the decanoic acid than did the other seven bases tested. By concentrating more of the bases and sugar that are the building blocks of RNA, the system would have been primed for the next steps, reactions that led to RNA inside a bag.

Descriptions of the published research can be found on the UW News website and on Babbage, the science and technology blog of The Economist.

To learn more about Professor Keller, visit her faculty page and research group website.

Comments are closed.