Department of Chemistry News

February 27, 2015

Recent work by Jesse Zalatan featured on the cover of Cell

Assistant Professor Jesse Zalatan and co-workers at the UCSF have developed a method to encode complex, synthetic transcriptional regulatory programs using the CRISPR-Cas system. Natural biological systems can switch between different functional or developmental states depending on the particular set of genes being expressed, and the ability to synthetically control gene expression has important implications as both a research tool and as a means to engineer novel cell-based therapeutics and devices.

Zalatan and coworkers designed CRISPR-Cas RNA scaffold molecules that specify both a DNA target and the function to execute at the target, so that sets of RNA scaffolds can be used to generate a synthetic, multigene transcriptional program in eukaryotic cells in which some genes are activated and others are repressed. These types of programs can be used to reprogram complex reaction networks in biological systems, such as metabolic pathways or signaling cascades.

For more information about Professor Zalatan and his research, please visit his faculty page and research group website.